
Eur. Phys. J. B 16, 403–410 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. Conduction electron properties of the quasi-one-dimensional conductors (PE)2XF6 ×
2/3 THF, X = P,As and (PE)4(SbF6)3 (PE = perylene, THF = tetrahydrofurane) were investigated
by measuring magnetic susceptibility and microwave conductivity in the temperature range from 10 K to
300 K. For quantitative analysis of the measurements a microscopic model was developed.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 72.80.Le Polymers; organic
compound (including organic semiconductors)

1 Introduction

Many quasi-one dimensional conductors show a metal-
semiconductor transition of the Peierls type [1]. Due to
electron-phonon coupling a condensed state is established
which is characterized by [2]

1. a static lattice distortion along the conducting axis
with wave number 2kF, coupled with

2. a 2kF charge density wave (CDW) built up by the elec-
trons near the Fermi level

3. an energy gap at the Fermi level.

In this work, the conduction electron properties of
three Perylene radical cation salts were investigated by
analyzing magnetic susceptibility and microwave conduc-
tivity in the temperature range from 10 K to 300 K. The
Perylene (PE) salts (PE)2XF6 × 2/3 THF (X = P or
As; THF = tetrahydrofurane) and (PE)4(SbF6)3 have the
one-dimensional stacking of the planar Perylene radical
cations and a 4:3 stoichiometry of Perylene cations and
hexafluoride complex monoanions in common. They differ
in the packing of additional molecules between the quasi-
one dimensionally conducting Perylene stacks: In the SbF6

compound only the anion chains are squeezed between
the Perylene stacks; they show, however, considerable
disorder [3,4]. In the Perylene salts PF6 and AsF6, the
conducting PE-stack is additionally surrounded by neu-
tral Perylene molecules and partially disordered THF sol-
vent molecules [4–6]. The consequences of these structural
differences are presented in this contribution.
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2 Experimental details and results

The details of crystal growth and experimental prepa-
ration of the systems have already been described in
preceding papers [3,5]. The magnetic susceptibility was
measured with a Quantum Design SQUID magnetome-
ter (Fig. 1). The magnetic susceptibility is dominated by
the highly anisotropic molecular diamagnetism [7]. Molec-
ular reorientations as observed at the structural phase
transitions of Perylene salts [6] lead thus to variations of
the magnetic susceptibility for fixed single crystal orien-
tation. In order to prevent corresponding artefacts in the
derivation of the temperature dependence of the conduc-
tion electron contribution, the measurements were per-
formed for a large number of crystals at statistical orienta-
tion. Longitudinal (= along the stack axis) and transverse
microwave conductivity was measured for single crystals
using the cavity-perturbation method [8] (Figs. 2, 3). At
10.2 GHz the reflection method and at 4.6 GHz, 9.3 GHz
and 23.5 GHz a transmission set-up were used [9].

3 Theoretical description

3.1 Electronic density of states

First we have to introduce the required approximations
and definitions. We will describe the organic quasi-1D
conductors as interacting electron-phonon systems, i.e. we
don’t consider the electron-electron interaction. The lat-
ter usually leads to a significant enhancement of the Pauli
spin susceptibility which is not observed in Perylene rad-
ical cation salts.

The usual starting-point for describing a one-
dimensional metal with dominant electron-phonon
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Fig. 1. Molar static magnetic susceptibility of (PE)2PF6 ×
2/3 THF, (PE)2AsF6 × 2/3 THF and (PE)4(SbF6)3 (SI-
units). The solid line shows the fit of χdia + χpara obtained
from the 2–50 K range (2–35 K for SbF6).

Fig. 2. Longitudinal and transverse microwave conductivity
of (PE)2PF6 × 2/3 THF and (PE)2AsF6 × 2/3 THF.

Fig. 3. Longitudinal and transverse microwave conductivity
of (PE)4(SbF6)3.

interaction is the 1D-Fröhlich Hamiltonian [10]

Ĥ = Ĥe + Ĥp + Ĥep (1)

with

Ĥe =
∑
k,s

ε(k)ĉ+k,sĉk,s

Ĥp =
∑
q

~ωq
(
b̂+q b̂q +

1
2

)

Ĥep =
∑
k,s

∑
q

g(q)ĉ+k+q,sĉk,s(b̂
+
−q + b̂q)

ĉ+k,s and ĉk,s are electron creation and annihilation
operators, b̂+q and b̂q phonon operators. We don’t consider
spin-dependent interactions, thus

∑
s = 2.

As it is well known, one can treat this Hamilto-
nian in a mean field approximation. In this model, a
Peierls transition occurs at a certain temperature TMF.
Below TMF, a temperature-dependent band gap of 2
|〈∆〉| is opened at the Fermi level. |〈∆〉| is proportional
to the amplitude of the lattice distortion at q0 = ±2kF.

〈∆〉 = g(q0)
(

~
2Mωq0

)1/2 〈
b̂q0 + b̂+−q0

〉
· (2)

A more accurate treatment of the problem leads
to the conclusion that such a state is not stable in
one-dimensional systems. As predicted by the Lan-
dau theorem, fluctuations of the order parameter 〈∆〉
destroy any long range order. That means |〈∆〉| = 0
for T > 0, but the gap fluctuation

〈
|∆|2

〉
6= 0. To

describe “real” Peierls systems one has to introduce
an appropriate three-dimensional coupling. In such
“quasi-one-dimensional conductors” a Peierls transi-
tion occurs at some temperature Tp with 0 < Tp < TMF

with the ratio Tp/TMF depending on the 3D-coupling [11].
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Currently there exists no single model to describe real
Peierls systems in the whole temperature range above and
below the phase transition. Therefore one has to use dif-
ferent methods in the regions above and below Tp. As it
is our aim to describe experimental curves, we will be sat-
isfied with approximate or phenomenological solutions for
the different temperature ranges.

High temperature region T ≥ Tp

In the temperature range T ≥ Tp we will use a method
formerly introduced by Rice and Strässler [12] treating the
electron-phonon interaction in second-order perturbation
theory and adding a phononic interchain coupling, i.e. a
dispersion of the phonons perpendicular to q0 (the chain
direction).
For details of the calculation we refer to [12,13].

The renormalized phonon spectrum in the region of
the soft mode q0 = (0, 0, 2kF) is then [11]

Ω2
q0+P = Ω2

q0

[
1 + ξ2

‖P
2
z

]
+ ω2

q0
ξ2
⊥(P 2

x + P 2
y ). (3)

One can calculate the electron self energy as [12,14]

Σ(k, iEn) = − 1
β

∑
i~ωl

∑
q

|g(q)|2 G0(k − q, iEn − i~ωl)

×D(q, i~ωl). (4)

Gap fluctuation, correlation lengths and renormalized
phonon frequency are related as

〈
|∆|2

〉
= π~vF

kBTa⊥
2ξ‖

(
Ω2

q0

λω2
q0

+ 2ξ2
⊥

)−1/2

(5)

with a⊥ being the distance between neighbouring stacks.
The main problem is now to find values of the cor-

relation lengths and the renormalized phonon frequency
as functions of temperature. The best way should be to
calculate these functions self-consistently which is barely
possible. But there exist several approximations for dif-
ferent temperature regions. To get values of Ω2kF and
ξ‖ we use an approximation introduced by Patton and
Sham [14] for the temperature range near Tp and the
Ginzburg-Landau method of Scalapino et al. [15] around
TMF. In the intermediate temperature range we interpo-
late between the two limiting regions. The gap fluctuation
is calculated via (5), the transverse correlation length is
used as a fit parameter. The other fit parameter is the
longitudinal electron-phonon coupling constant g(2kF), re-
spectively its dimensionless version

λ =
D0

ω2
2kF

|g(2kF)|2 (6)

which determines TMF and the zero-temperature gap
value |〈∆〉|T=0.

Low temperature region T < Tp

Below the transition temperature Tp three-dimensional
long range order is established. This state is character-
ized by the non-zero expectation value |〈∆〉| of the order
parameter. Therefore, an appropriate description is to use
the mean field Hamiltonian again, just with a modified
temperature dependence of |〈∆〉|. Schulz [11,16] has in-
troduced the so-called scaled mean field gap equation

1 =
λ

2

∫ εB

−εB

1√
ε2 + |〈∆〉|2

tanh

[√
ε2 + |〈∆〉|2
2kBT ∗

]
dε (7)

with

T ∗ = T
Tp

TMF
· (8)

From equation (7) the temperature dependence of
|〈∆〉| is obtained. Then the density of states of the up-
per subband is just

D+(ε+) = D0
ε+√

(ε+)2 − |〈∆〉|2
(9)

with

ε+ =
√
ε2 + |〈∆〉|2. (10)

3.2 Crystal parameters and band structure

Band structure calculations for (PE)2PF6 × 2/3 THF
and (PE)4(SbF6)3 were performed by Whangbo and co-
workers [17]. For the following analysis, we use a simple
linear dispersion for the one-dimensional band structure
around the Fermi level in the metallic (undisturbed) state:

ε(k) =

{
~vF(k − kF) for |k − kF| < δB

−~vF(k + kF) for |k + kF| < δB
(11)

with Fermi velocity vF and wave vector kF. Values for the
Fermi velocity were obtained from the band structure cal-
culations and were confirmed (for (PE)2PF6 × 2/3 THF)
by measurements of optical reflectivity [13] (see Tab. 1).

3.3 Conduction electron susceptibility

The magnetic susceptibility of the conduction electrons is
directly obtained from the density of states. We use the
molar susceptibility

χc.e.
m = NAc

y

x
µ0µ

2
B

∫
D(ε)

(
−∂f
∂ε

)
dε (12)

where NA is the Avogadro constant, c the lattice constant
in chain direction, x the number of formula units in one
elementary cell and y the number of chains per unit area.
For D one has to use the density of states per energy and
volume, including a factor of 2 for both spin directions.
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Table 1. Table of the numerical results

(PE)2PF6 × 2/3 THF (PE)2AsF6 × 2/3 THF (PE)4(SbF6)3

Band structure calculations

vF / (105 m/s) 1.63 1.63 1.74

χ0(300 K) / (10−9 m3/mol) 1.25 1.25 3.73

Susceptibility measurements

C / (10−9 m3K/mol) 8.26 ± 0.76 5.90 ± 0.39 (3.05 ± 0.37) ×102

χDia / (10−9 m3/mol) −5.35± 0.21 −5.48 ± 0.13 −12.5 ± 1.1

Tp / K 118 ± 2 102 ± 2 -

Model calculations for χc.e.

λ 0.56 0.54 0.35

TMF / K 273 253 330

〈∆〉 (T = 0) / meV 41 38 -

Model calculations for σ

µges(250 K) / (10−4 m2/Vs) 2.5 1.5 11.5

τ⊥(250 K) / 10−11 s 13.6 6.0 20.5

3.4 Conductivity

Semiclassical theory

It is rather difficult to include all aspects of transport be-
haviour of Peierls systems in one single model, especially
at the level of quantum microscopic theory. Existing mod-
els focus on certain properties of such systems, for exam-
ple CDW transport (see for example [18] and references
therein). We are mostly interested in the conductivity due
to single electrons, and to treat this problem in an eco-
nomic way, we will rest on the basic level of semiclassical
theory.

The conductivity of a quasi-one dimensional system is
then calculated with the Boltzmann equation and reads
(with Nc the number of chains per unit area)

σ = 2Nce
2

∫
|v(ε)|2τ(ε)

(
−∂f
∂ε

)
D(ε)dε. (13)

The situation is quite clear in the low temperature
(semiconducting state) and the high temperature (metal-
lic state) limits, where a well defined band structure
can be used. For the fluctuation regime there exist two
possibilities.

First, we can treat the lattice fluctuations as an addi-
tional scattering potential. This will be correct as long as
the mean free path l̄ of the electrons is long enough to use
the Boltzmann equation. Furthermore, the longitudinal
correlation length ξ‖ of the fluctuating lattice distortion
must remain small. If l̄ < ξ‖ the electrons will rather “see”
a local gap than a scattering potential.

For the temperature region approaching Tp one may
use the method first introduced by Johnston [19]. In this
model the influence of fluctuations is summarized in an ef-
fective (temperature-dependent) electronic gap ∆eff . This
is a phenomenological treatment, but it has two advan-
tages. First of all, one can describe the different temper-
ature regions with one and the same tool. And second –
what is more important in our case – it is possible to derive
an effective mobility without knowing details of the scat-
tering mechanisms in the crystal. Therefore this method

is used in the following. For a detailed discussion of the
scattering processes and the intrinsic transport quantities
we refer to [13].

3.5 Analysis procedure

The combined analysis of magnetic susceptibility and con-
ductivity is performed in several steps. The procedure is
described in detail in [13].

By combining results from EPR analysis and static
susceptibility measurements, all contributions to the static
magnetic susceptibility can be separated. Because no mag-
netic ordering is observed, the susceptibility has only three
contributions: the diamagnetic and paramagnetic suscep-
tibility of the bounded electrons and the conduction elec-
tron susceptibility.

χ = χdia + χpara + χc.e.. (14)

The paramagnetic contribution obeys a Curie law and
is determined by the concentration of impurities and struc-
tural defects with localized magnetic moments.

The susceptibility of the conduction electrons was then
analyzed with the models described in Section 3 and [13].
In cases where a Peierls transition occurred, the rele-
vant parameters as transition temperature Tp, energy gap
|〈∆〉|, longitudinal electron-phonon coupling λ and trans-
verse correlation length ξ⊥ were determined.

To analyze the conductivity measurements, the effec-
tive electron density in the upper partial band n̄ and ef-
fective density of states D̄ were calculated from the con-
duction electron susceptibility results [13]. This allows the
average mobility µ (in stack direction) and the transverse
hopping time τ⊥ to be obtained from the conductivity
results with

σ‖ = 2n̄eµ (15)

σ⊥ = D̄
e2a2
⊥

τ⊥
(16)

where a⊥ is the distance between neighbouring stacks.
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In the following, our discussion of the temperature-
dependence always starts at room temperature and goes
on towards lower temperatures.

4 Discussion of the results

4.1 Magnetic susceptibility, Peierls transition
and electron-phonon-coupling

Magnetic susceptibility and EPR measurements on
(PE)2PF6 × 2/3 THF and (PE)2AsF6 × 2/3 THF showed
the absence of magnetic order in these systems [20,21].
The Curie paramagnetism dominates at low temperatures.
Results for the Curie constant and the diamagnetism de-
rived from Figure 1 are given in Table 1. The measured
values for the diamagnetism are in good agreement with
the theoretical ones. The concentration of spin 1/2 im-
purities is in the range of 1 ... 2× 10−3 per formula unit.
The conduction electron susceptibility (Fig. 4) decreases
with decreasing temperature throughout the temperature
range analyzed, i.e. the systems are never in a pure metal-
lic state.

For (PE)2PF6 × 2/3 THF the step at (151±2) K indi-
cates a structural phase transition [6]. At Tp = (118±2) K
the Peierls transition occurs, and the susceptibility shows
an activated behaviour below Tp. A more profound analy-
sis with the models of Section 3 leads to the following re-
sults. As the structural phase transitions do not affect the
relations in stack direction [4,6], the longitudinal electron-
phonon coupling λ does not change above Tp. Values of
about 0.5 indicate intermediate coupling. The mean field
temperatures calculated from λ lie near room tempera-
ture, indicating that lattice fluctuations are still present
in this temperature range. The transverse coupling is weak
for high temperatures. In (PE)2PF6 × 2/3 THF the trans-
verse coupling increases abruptly below 151 K due to the
structural phase transition. Towards the Peierls transition
temperature the transverse correlation length increases
as three-dimensional order is established. The analysis in
Figure 4 gives λ = 0.56 and TMF = 273 K. This agrees
with the general temperature dependence of χc.e., indi-
cating lattice fluctuations up to room temperature.

In (PE)2AsF6 × 2/3 THF (Figs. 1 and 4) the struc-
tural phase transition is of a second-order nature [6], lead-
ing to a continuously increasing transverse phonon cou-
pling from 170 K to 130 K. The Peierls transition occurs
at Tc = (102±2) K and is less sharp than in the PF6 salt.
The analysis of Figure 4 gives λ = 0.54 and TMF = 253 K.

For (PE)4(SbF6)3 the situation is different. First of
all, the concentration of impurities is significantly higher
than in the other systems (Fig. 1). That means, the para-
magnetic contribution dominates to such an extent that
it hides the conduction electron susceptibility. Therefore,
additional EPR analysis was used to identify the different
contributions and to fix the absolute values of the con-
duction electron susceptibility [3]. As shown in Figure 4,
χc.e. decreases steadily towards lower temperatures with-
out showing anomalies. There is no indication of phase
transitions.

Fig. 4. Normalized conduction electron susceptibility
of (PE)2PF6 × 2/3 THF, (PE)2AsF6 × 2/3 THF and
(PE)4(SbF6)3 compared to the results of the model cal-
culation. T = 130 K was used for the normalization of the
ESR-susceptibility for PF6. Inset: z = ξ⊥/a⊥ is the transverse
correlation length in units of the interstack distance.

(PE)4(SbF6)3 fulfills the phenomenological conditions
– anisotropic conductivity (Fig. 3) and suitable crystal
structure [3] – for a one-dimensional conductor as well as
the other two systems. Nevertheless (PE)4(SbF6)3 under-
goes no Peierls transition. So one can assume that lattice
fluctuations suppress the Peierls transition in the whole
temperature region in discussion. A priori there are two
possible reasons for this – either lack of three-dimensional
coupling or impurity effects. The detailed structural anal-
ysis points to the influence of anion-chain disorder [3].

For the quantitative analysis of the temperature de-
pendence of the conduction electron magnetic suscepti-
bility of (PE)4(SbF6)3 in Figure 4 the one-dimensional
limit of the model from Section 3 was used. The re-
sults of the numerical analysis are λ = 0.35 and TMF =
330 K (Tab. 1).
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4.2 Microwave conductivity

Figures 2 and 3 show the longitudinal and transverse
microwave conductivity of the three systems. The abso-
lute values of σ‖ are rather low, lying in the range of
1.2× 104 S/m at room temperature. The transverse con-
ductivity is three orders of magnitude smaller than σ‖, so
all systems are proved to be quasi one-dimensional con-
ductors.

The low absolute values result from the domain-
like structure of the crystals, first shown by measure-
ments of the diffusion constant with pulsed EPR [22].
The electron mobility therefore has two contributions, an
intrinsic one caused by electron scattering due to lat-
tice fluctuations and ordinary phonons, and a macro-
scopic or quasi-microscopic part due to the domain walls.
This also explains why the longitudinal conductivity
in (PE)2PF6 × 2/3 THF and (PE)2AsF6 × 2/3 THF in-
creases with increasing microwave frequency [13,8]. It is
important to mention that no difference was observed be-
tween the temperature dependence of the spin diffusion
constant and microwave conductivity parallel to the stack-
ing direction [23], proving that Peierls systems really are
analyzed here.

The temperature dependence of σ‖ in (PE)2PF6 ×
2/3 THF reflects a strong influence of the structural phase
transitions. At 213 K the crystal splits up in two kinds of
domains where the stack molecules are turned in different
directions. This leads to additional electron scattering and
therefore to a decrease of σ‖ towards lower temperatures.
At 151 K the stack molecule rotation forces the anions
to move out of their original positions (or the other way
around!) [6]. Therefore each second stack has to turn back
a little bit, resulting in a doubling of the elementary cell in
a direction. This is indicated by a step in the conductivity
with higher values below the transition temperature. As
the conduction electron susceptibility also steps to higher
values below 151 K, this cannot be a band structure (band
width) effect. It is more likely that the increase of the
transverse coupling partly suppresses the lattice fluctua-
tions, leading to reduced electron scattering.

The opening gap at the Peierls transition (118 K) re-
sults in an activated behaviour of the conductivity. The
local maximum at 30 K indicates excitation of charge den-
sity waves, as a similar effect was not measured in the DC
conductivity [24,25].

(PE)2AsF6 × 2/3 THF shows a similar behaviour as
(PE)2PF6 × 2/3 THF, but the effects due to the struc-
tural phase transitions are less significant (Fig. 2). In this
system the structure changes continuously [6,13] so that
the effect on the conductivity can hardly be distinguished.

The microwave conductivity of (PE)4(SbF6)3 gives no
hints of phase transitions (Fig. 3), in agreement with the
susceptibility results. Unlike the other systems, the con-
ductivity is not frequency-dependent within the used fre-
quency range (4.6 to 23 GHz). This might be due to a
different domain size distribution than in the other sys-
tems [3,8,13].

Fig. 5. Electron mobility in stack direction of (PE)2PF6 ×
2/3 THF, (PE)2AsF6 × 2/3 THF and (PE)4(SbF6)3.

4.3 Electron mobility and interchain hopping

Using the conductivity data for both orientations and the
results from the susceptibility analysis, the average mobil-
ity in stack direction and the average transverse hopping
time can be calculated, as reported in Section 3.

In order to derive the average mobility, plotted in Fig-
ure 5, the effective electron concentration

n =
∫

+

D(ε)f(ε)dε (17)

is inserted in equation (15). Like the microwave conduc-
tivity parallel to the stacking direction, this average mo-
bility reflects the influence of quasi-microscopic defects as
well as the intrinsic variation. Actually, for all three com-
pounds the intrinsic scattering rates are only of low im-
portance for the total average scattering rates [13]. The
influence of the structural phase transitions of the PF6
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salt at 213 K and 151 K and the dramatic increase of the
average mobility due to the contribution of charge density
waves at low temperatures can be seen in Figure 5. Typ-
ically, for all three Perylene salts, around room tempera-
ture the mobility increases with decreasing temperature,
starting from similar values of about 1.5 cm2/Vs for the
PF6 and AsF6 salts, but a larger value of about 8 cm2/Vs
for the SbF6 salt. Generally, a maximum of the mobility
is reached in the “metallic” range around 90–150 K, fol-
lowed by a decrease due to activated conductivity at lower
temperatures, clearly visible for the PF6 and SbF6 salts.
For the AsF6 salt, the low-temperature minimum of the
average mobility is covered by its more pronounced CDW
contribution rising at Tp = 102 K already.

Using the integrated density of states

D =
∫
D(ε)(−∂f

∂ε
)dε (18)

and the experimental results for σ⊥ (Figs. 2, 3) the
transversal hopping time τ⊥ is derived with equation (16).
Since (due to the huge anisotropy of σ) the absolute value
and temperature dependence of σ⊥ depends critically on
the precision of the single crystal orientation during the
conductivity measurements, the influence of σ‖ on the
data analysis can not absolutely be excluded. Indeed, the
τ⊥ values shown in Figure 6 for the “metallic” phase range
in the order of magnitude of 0.5 ... 4×104 τ̄‖! The decrease
of τ⊥ at the lowest temperatures is not an intrinsic effect,
but seems to originate from the interplay of charge density
wave excitations. Being roughly inversely proportional to
the mobility, the transversal hopping time decreases with
decreasing temperature for all three compounds starting
at room temperature, but increases again at temperatures
below 150–100 K as expected for phonon assisted hopping.
It is important to note that for all temperatures between
300 K and 100 K the absolute values of the transversal
hopping times of the three different Perylene salts agree
within a factor of three and vary with temperature by less
than 50% only.

5 Conclusions

5.1 Structural phase transitions and Peierls
transition in (PE)2PF6 × 2/3 THF
and (PE)2AsF6 × 2/3 THF

A model of the structural phase transitions in
(PE)2PF6 × 2/3 THF was proposed in [6], considering the
X-ray structural and EPR measurements. At 213 K the
crystal splits up in two kinds of domains where the stack
molecules are turned in different directions. The rotation
angle increases with decreasing temperature. At 151 K the
stack molecule rotation forces the anions to move out of
their original positions. Therefore each second stack has
to turn back a little bit, resulting in a doubling of the
elementary cell in the a-direction. Only in this low tem-
perature range, the anion rotational motion is frozen-in
according to nuclear spin lattice relaxation analysis [26].

Fig. 6. Transverse hopping time of (PE)2PF6 × 2/3 THF,
(PE)2AsF6 × 2/3 THF and (PE)4(SbF6)3.

Applying this model to the susceptibility and conduc-
tivity results leads to the following conclusions. The rota-
tion of the stack molecules below 213 K influences neither
the one-dimensional conduction band nor the transverse
coupling, as χc.e is not affected at all. The only anomaly
of χc.e occurs at 151 K and was interpreted as a change
of the transverse coupling due to the shift of the anions
out of their original positions. If we further take into ac-
count that the absence of long-range order of the anion
chains of (PE)4(SbF6)3 perpendicular to the stack direc-
tion suppresses the Peierls transition in that system [3], we
conclude that the Peierls transition in the PF6- and AsF6-
systems is triggered by three-dimensional phonon coupling
via the anions (a-direction). The structural measurements
in both systems gave indications that there is an addi-
tional Coulomb interaction between the charge density
waves at low temperatures in the b-direction however [6].
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5.2 Behaviour of (PE)4(SbF6)3

A naive explanation for the absence of a Peierls transition
in (PE)4(SbF6)3 would be based on impurity effects in
the one-dimensional PE-stack. But several experimental
results do not match with this assumption. First of all,
the resistivity in (PE)4(SbF6)3 and the fluctuation gap
magnitude are not significantly higher than in the other
systems. Furthermore, the EPR results suggest that most
impurities are located on the surface of the crystal and
do not get in contact with the conduction electrons [3].
This leads to the conclusion that the transverse coupling
itself is suppressed. From crystal structure analysis it
is known that the anion chains in (PE)4(SbF6)3 have
no long-range order in the a- and b-directions [3]. The
related correlation length lies in the range of 400 Å, which
is much less than extensions of several µm in the two
other systems. If we assume that the ordered anions are
needed for transverse phononic coupling, as was shown
for the PF6- and AsF6-systems, this easily explains the
lack of transverse coupling and suppression of the Peierls
transition in (PE)4(SbF6)3.

We thank I. Odenwald for crystal growth, M.T. Kelemen
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was supported by the Deutsche Forschungsgemeinschaft within
SFB 195 (Universität Karlsruhe (TH)).
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